毕业论文
您现在的位置: 医药信息 >> 异常症状 >> 正文 >> 正文

初窥AI制药BAT们的下个万亿试炼场

来源:医药信息 时间:2024/10/20
北京哪家医院治疗白癜风好点 https://disease.39.net/yldt/bjzkbdfyy/

众所周知,创新药研发迄今仍逃不开“双十定律”——研发费用10亿美元,研发周期10年。高投入与高风险,不仅考验投资人的耐性与运气,更令憧憬于改变产业格局与人类健康命运的创新药公司与科学家,长期徘徊于“一念天堂一念地狱”之间。

就在5月27日,天境生物(NASDAQ:IMAB)公布其“CD73抗体尤莱利单抗药物”的中国II期临床研究数据。数据显示,在19例可评估疗效患者中,5例达到部分缓解(PR),客观缓解率(ORR)为26%;9例疾病稳定(SD),疾病控制率(DCR)为73.7%。

有评论人士认为,两药联用26%的ORR,可能单用PD-1也不比这个数据差多少,这吃了和没吃有啥区别吗?二级市场随之投出不信任票,天境生物市值本来就日渐萎靡的市值被一刀砍翻,当日重挫26.88%。这则案例,也再度印证了创新药研发之难,对于医药公司而言如同一场“生死劫”。

图:天境生物市值来源:雪球

如何能通过技术革命,“更快、更好、更强”地进行新药研发,从本质上实现医药公司“逆天改命”式救赎?在这个问题上,除了祈祷,更多的创新药公司正将希望寄托在“AI‘制药’”上——

随着赛诺菲与英国药物研发AI技术服务提供商Exscientia达成了一笔52亿美元的AI制药大单;英矽智能,半年内两次宣布发现新药,并率先进入临床试验新阶段;阿斯利康、默克、辉瑞、梯瓦等制药巨头联合建立的AI药物研发实验室AIONLabs宣布正式启动……各界无不期待“AI‘制药’”重新定义制药流程,为世界带来一场巨大变革。

那么,AI制药到底是什么?

AI如何“制药”?

19世纪以前,人们主要利用天然植物、动物、矿物直接用于部分疾病的治疗。例如《本草纲目》记录了各种动物和人体组织等“奇葩”药材。这个时期,只要是自然界存在的物质,人们都拿来试试能不能做成药。

20世纪随着随着药理学和有机化学等科学的发现,人们可以合成一些自然界不存在的全新化合物。这些药物以人体为研究对象,以人体代谢和作用机制为抓手,研究出了抗生素、维生素、磺胺类药物、精神病药物、麻醉镇痛、疫苗等的新药。

20世纪60-80年代,一些与疾病相关的酶、激素、神经递质的受体和底物被发现。物质分析检测技术和计算机的发展应用。人们开始尝试摆脱随机发现转向到主动编辑化合物。

20世纪80年代之后,基因组学、蛋白质组学、生物信息学等现代分子生物学科得到发展,以靶点为基础的新药研发模式得到应用。

如今,新药物发现的大致过程需要先发现靶点-验证靶点-发现先导物-优化先导物,从数十万个化合物中选出几个候选药物,最后再进入临床试验环节。靶点可以理解为不同疾病关键点构成的“锁”,人们在众多药物分子可能性中,设计和筛选最合适的分子作为“钥匙”去解锁。

人们利用计算机辅助制药(CADD)来评估分子多样性、构建化合物库、开展基于分子相似性的筛选。建立大型化合物库与生物靶标自动对接软件,并分别打包变成研发系统的组件。

CADD的应用,一方面能够允许研究者减少实验来评估化合物的有效性,直接在电脑上就能设计和“改造”分子。但另一方面,这些分子仍需要人工搭建生成,并与资料库比对。这些前期工作需要从上万个化合物中一个个筛选无异于“大海捞针”。

图:药物研发流程示意。来源:塔夫茨药物开发研究中心

这种对人来说的繁琐工作,恰恰是AI非常典型的应用场景。

今天所说的AI制药就是利用AI的归纳推理能力,分析实验数据优化药物研发环节;利用AI算力优势,物理层面演绎分子结构从而加速筛选优化先导物。换句话说,AI制药把创新药行业的规则扭转到了比特币“挖矿”的逻辑。谁的算力大,谁的模型做的好,谁就能率先进入临床试验。

AI制药可以跳过原来漫长的临床前的研发时间,降低前期研究所耗费巨大的人力和材料成本,直接推选出最符合要求的候选药物。而这恰恰是创新药前期研发的全部流程。谁能率先发现新的靶点,谁就能摆脱其他的同类追随者。

以治疗肿瘤的PD-1为例,这个靶点上密密麻麻趴满了等待套利的伪创新药企业,同业竞争压力巨大。跟这些追随者竞争,就算成功跑了出来,在中国也要面临医保费用有限购买力的“大剪刀”,让这些fastinfollow、metoo、mebetter企业蹦跶不了太高。

AI制药的大面积应用这将允许药企能够摆脱经费不充足的压力,可以不再追热度、抄作业,向着BestinClass(同类最优)甚至FirstinClass(同类第一)进军。更好地吃到独家特效药所带来的收益,为社会和股东创造价值。

在算力取得长足进步的今天,AI制药在硬件上具备了施展的可行性。AI制药的实力如何,还得看赛道上的玩家做得怎么样。

赛道上都有谁?

目前,AI药物研发市场有三大类公司,IT巨头、AI药物研发初创企业和大型药企。三类企业依托各自在平台、算法和数据的优势切入行业。

大型药企这边,近年来世界头部药企如辉瑞、诺华、强生、阿斯利康、默沙东等都有积极布局AI药物研发领域;国内医药行业的龙头,如中国生物医药、药明康德等也抓住机遇纷纷布局此赛道,开展与AI药物研发初创公司的合作。

布局方式上,国外医药公司多与初创型AI药物研发公司合作,共同开发新药模式为主,也会以投资的方式合作。国内医药企业在AI药物研发的布局虽然相较海外略晚,但也是合作与投资兼有。其中药明康德前后已参与了4家AI药物研发初创公司的投资。

图:国内公司与AI公司合作情况来源:健康界研究院

IT公司这边,从年开始,阿里、腾讯等巨头都开始相继布局此赛道。主要发力方向是利用公司算力和AI模型的优势,介入到AI制药的环节中。

例如百图生科推出的“免疫图谱卓越计划”,实质上是结合百度自有的算力和AI经验,结合10亿元资金补贴吸引生态联盟合作伙伴共同运作的生物运算引擎平台。不过,目前这些科技公司搭建的平台都是以搭载数据库训练模型为主,并未产生太多实际应用。

图:国内IT巨头布局AI制药数据平台来源:亿欧智库

初创企业是AI制药的主力军,是AI制药的主要推动者和实践者。年,全球融资总额约为亿元(超42亿美元)。其中,中国在该领域的融资金额超过90亿元。

年一季度,AI制药领域发起40多起融资,总金额金额累计超24亿美元。投融资活动仍主要发生在中美两国,占总融资事件的80%。其中,国外的Schrodinger、Exscientia、Abcellera和国内的英矽智能、晶泰等公司较为优秀。

图:截止至年初,全球AI制药融资情况来源:BiopharmaTrend

Exscientia(纳斯达克上市,市值14亿美元)

从年成立到现在,exsientia成功让两个AI研发的药物走上临床试验阶段。分别是治疗强迫症的化合物DSP-和免疫肿瘤药物EXS。这两款药的前期研发周期均不超过一年。

Exscientia的核心能力源自于扎实的数据库(ChEMBL)和主动学习的AI。ChEMBL是一个包含了大量临床实验药物和批准药物的治疗靶标和适应症的平台,是成为AI制药公司们训练并生成药物分子最重要的数据源之一。公司的主动学习AI,可以在数据很少打标签,或者不打标签的情况下,通过让模型更多

转载请注明:http://www.0431gb208.com/sjslczl/7940.html

  • 上一篇文章:
  • 下一篇文章: 没有了